On The Inequalities Similar to the Hilbert's Inequality

Hüseyin YILDIRIM¹, Mehmet Zeki SARIKAYA² and Umut Mutlu OZKAN³

¹Department of Mathematics, Faculty of Science and Arts, Sutcu Imam University, Kahramanmaraş-TURKEY
E-mail: hyildir@ksu.edu.tr

²Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce-TURKEY
E-mail: sarikayamz@gmail.com

³Department of Mathematics, Faculty of Science and Arts, Kocatepe University, Afyon-TURKEY
E-mail: umut_ozkan@aku.edu.tr

Abstract. By introducing the function

\[
\frac{x^{\alpha} y^{\alpha}}{x^\alpha + y^\alpha + \min\{x^\alpha, y^\alpha\}} \ln x^\alpha - \ln y^\alpha \geq \frac{1}{\alpha},
\]

we study new inequalities similar to Hilbert's type inequality. We also consider its equivalent form as well.

Keywords: Hardy-Hilbert Type Integral Inequalities, weighted function, Best constant factor.

Mathematics Subject Classification: 26D10, 16D15

1. Introduction

If \(f(x), \ g(x) \geq 0 \), such that \(0 < \int_0^\infty f^2(x)dx < \infty \) and \(0 < \int_0^\infty g^2(x)dx < \infty \) then

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y} dydx < \pi \left(\int_0^\infty f^2(x)dx \right)^{\frac{1}{2}} \left(\int_0^\infty g^2(x)dx \right)^{\frac{1}{2}}, \tag{1.1}
\]

where the constant factor \(\pi \) is the best possible (see [4],[5]). Inequality (1.1) had been extended by Hardy-Riesz as :

If \(p > 1 \), \(\frac{1}{p} + \frac{1}{q} = 1 \), \(f(x), \ g(x) \geq 0 \), such that \(0 < \int_0^\infty f^p(x)dx < \infty \) and \(0 < \int_0^\infty g^q(x)dx < \infty \), then we have the following Hardy-Hilbert's integral inequality:

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y} dydx < \frac{\pi}{\sin^2\left(\frac{\pi}{2}\right)} \left(\int_0^\infty f^p(x)dx \right)^{\frac{1}{p}} \left(\int_0^\infty g^q(x)dx \right)^{\frac{1}{q}}, \tag{1.2}
\]

where the constant factor \(\frac{\pi}{\sin^2\left(\frac{\pi}{2}\right)} \) is the best possible constant (see [2]). This inequality play an important role in mathematical analysis, which is named of Hardy-Hilbert's inequality and its applications(see [11]), it has been studied and generalized in many directions by a number of mathematicians(see [1-3],[7,8],[12-16]).

Under the some condition of (1.2), we have the Hardy-Hilbert's type inequality (cf. Hardy et al.[4])

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{\min\{x,y\}} dydx < 4 \left(\int_0^\infty f^2(x)dx \right)^{\frac{1}{2}} \left(\int_0^\infty g^2(x)dx \right)^{\frac{1}{2}}, \tag{1.3}
\]

\[
\int_0^\infty \int_0^\infty \frac{\ln x - \ln y}{x-y} f(x)g(y) dydx < \pi^2 \left(\int_0^\infty f^2(x)dx \right)^{\frac{1}{2}} \left(\int_0^\infty g^2(x)dx \right)^{\frac{1}{2}}. \tag{1.4}
\]
where the constant factors 4 and π are both the best possible.

Li, Wu and He [9] obtained the following inequality:

Theorem 1.1. If f, g are real function such that $0 < \int_0^\infty f^2(x)dx < \infty$ and $0 < \int_0^\infty g^2(x)dx < \infty$. Then we have

$$\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y+\min\{x,y\}} dxdy \leq C\left(\int_0^\infty f^2(x)dx\int_0^\infty g^2(x)dx\right)^{\frac{1}{2}}, \quad (1.5)$$

where the constant factor $C = 1.7408...$ is the best possible.

Recently Y.Li, Q. You and B. He [10] obtained the following inequality:

Theorem 1.2. If f, g are real function such that $0 < \int_0^\infty f^2(x)dx < \infty$ and $0 < \int_0^\infty g^2(x)dx < \infty$. Then we have

$$\int_0^\infty \int_0^\infty \frac{\ln(x) - \ln(y)}{x+y+\min\{x,y\}} f(x)g(y)dxdy \leq A\left(\int_0^\infty f^2(x)dx\int_0^\infty g^2(x)dx\right)^{\frac{1}{2}}, \quad (1.6)$$

where $C = 7.3277...$.

B. He, Q. You and Y.Li [6] gave a generalization and improvement of Hilbert’s inequality as following:

Theorem 1.3. If f, g are real function such that $0 < \int_0^\infty f^2(x)dx < \infty$ and $0 < \int_0^\infty g^2(x)dx < \infty$. Then, we have

$$\int_0^\infty \int_0^\infty \frac{\ln(x) - \ln(y)}{x+y+\min\{x,y\}} f(x)g(y)dxdy \leq A\left(\int_0^\infty f^2(x)dx\int_0^\infty g^2(x)dx\right)^{\frac{1}{2}}, \quad (1.7)$$

where the constant factor $A = 6.88947...$ is the best possible.

The object of this paper is that to give a generalization and improvement of Hilbert’s inequality by (1.4), (1.5), (1.6) end (1.7) as following.

$$\int_0^\infty \int_0^\infty \frac{\ln(x) - \ln(y)}{x+y+\min\{x,y\}} f(x)g(y)dxdy \leq A\left(\int_0^\infty f^2(x)dx\int_0^\infty g^2(x)dx\right)^{\frac{1}{2}}, \quad (1.8)$$

where $A = \frac{6.88947...}{\alpha}$ and $\alpha \geq 1$.

2. Main Results

Theorem 2.1. If f, g are real function such that $0 < \int_0^\infty f^2(x)dx < \infty$ and $0 < \int_0^\infty g^2(x)dx < \infty$. Then we have

$$\int_0^\infty \int_0^\infty \frac{\ln(x) - \ln(y)}{x+y+\min\{x,y\}} f(x)g(y)dxdy \leq A\left(\int_0^\infty f^2(x)dx\int_0^\infty g^2(x)dx\right)^{\frac{1}{2}}, \quad (2.1)$$

where $A = \frac{6.88947...}{\alpha}$ is the best possible dependent on $\alpha \geq 1$.

Proof. By Hölder’s inequality we have the following inequality.

\[
\int_{0}^{\infty} \int_{0}^{\infty} x^\alpha y^{\alpha-1} \left| \ln x^\alpha - \ln y^\alpha \right| \frac{f(x)g(y)dxdy}{x^\alpha + y^\alpha + \min\{x^\alpha, y^\alpha\}} \\
= \int_{0}^{\infty} \int_{0}^{\infty} \left[y^{\alpha-1} \left| \ln x^\alpha - \ln y^\alpha \right| \right] \frac{1}{x^\alpha + y^\alpha + \min\{x^\alpha, y^\alpha\}} \left(\frac{1}{\gamma} \right)^\frac{\gamma}{2} f(x) \\
\times \left[\frac{1}{x^\alpha + y^\alpha + \min\{x^\alpha, y^\alpha\}} \left(\frac{1}{\gamma} \right)^\frac{\gamma}{2} g(y) \right] dxdy \\
\leq \int_{0}^{\infty} \int_{0}^{\infty} \left[y^{\alpha-1} \left| \ln x^\alpha - \ln y^\alpha \right| \right] \frac{1}{x^\alpha + y^\alpha + \min\{x^\alpha, y^\alpha\}} \left(\frac{1}{\gamma} \right)^\frac{\gamma}{2} dy \left(\frac{1}{\gamma} \right)^\frac{\gamma}{2} dx \\
\times \left[\frac{1}{x^\alpha + y^\alpha + \min\{x^\alpha, y^\alpha\}} \left(\frac{1}{\gamma} \right)^\frac{\gamma}{2} \right] g^2(y)dy \right]^\frac{1}{2}.
\]

Define the weight function \(\omega(u) \) as

\[
\omega(u) := \int_{0}^{\infty} \left| \ln u^\alpha - \ln v^\alpha \right| \frac{1}{u^\alpha + v^\alpha + \min\{u^\alpha, v^\alpha\}} \left(\frac{1}{\gamma} \right)^\frac{\gamma}{2} dv.
\]

For fixed \(u \), let \(v = ut \), we have the following equality

\[
\omega(u) = \int_{0}^{\infty} \frac{(ut)^{\alpha-1} |\ln u^\alpha - \ln (ut)^\alpha|}{(ut)^\alpha + u^\alpha + \min\{u^\alpha, v^\alpha\}} \left(\frac{1}{\gamma} \right)^\frac{\gamma}{2} u dt \\
= \int_{0}^{\infty} \frac{t^{\alpha-1} |\ln t^\alpha|}{1 + t^\alpha + \min\{1, t^\alpha\}} \left(\frac{1}{\gamma} \right)^\frac{\gamma}{2} dt \\
= \frac{1}{\alpha} \int_{0}^{\infty} \frac{|\ln z|}{1 + z + \min\{1, z\}} \left(\frac{1}{\gamma} \right)^\frac{\gamma}{2} dz, \quad z = t^\alpha \\
= \frac{1}{\alpha} \left[\int_{0}^{\infty} \frac{|\ln z|}{1 + z + \min\{1, z\}} \left(\frac{1}{\gamma} \right)^\frac{\gamma}{2} dz + \int_{1}^{\infty} \frac{|\ln z|}{1 + z + \min\{1, z\}} \left(\frac{1}{\gamma} \right)^\frac{\gamma}{2} dz \right] \\
= \frac{1}{\alpha} \left[-\frac{1}{\alpha} \int_{0}^{\infty} \frac{|\ln z|}{1 + 2z} \left(\frac{1}{\gamma} \right)^\frac{\gamma}{2} dz + \frac{1}{\gamma} \ln z \left(\frac{1}{\gamma} \right)^\frac{\gamma}{2} \frac{\gamma}{2} \right] \\
= -\frac{1}{\alpha} \frac{1}{\gamma} \frac{1}{\gamma} \frac{\gamma}{2} dz \\
= -\frac{1}{\alpha} \frac{1}{\gamma} \frac{\gamma}{2} zs, \quad s = z^\frac{1}{\alpha} \\
= \frac{6.88947}{\alpha}.
\]

Thus

\[
\int_{0}^{\infty} \int_{0}^{\infty} x^\alpha y^{\alpha-1} \left| \ln x^\alpha - \ln y^\alpha \right| \frac{f(x)g(y)dxdy}{x^\alpha + y^\alpha + \min\{x^\alpha, y^\alpha\}} \leq A \left(\int_{0}^{\infty} f^2(x)dx \int_{0}^{\infty} g^2(y)dy \right)^\frac{1}{2}.
\]
If (2.2) take the form of the equality, then there exist constants δ and β, such that they are not all zero (Without loss of generality, suppose that $\delta \neq 0$) and

$$\delta \frac{y^{\alpha}}{x^\alpha + y^\alpha + \min \{x^\alpha, y^\alpha\}} \left(\frac{x}{y} \right)^{\beta} f^2(x) = \beta \frac{x^{\alpha}}{x^\alpha + y^\alpha + \min \{x^\alpha, y^\alpha\}} \left(\frac{x}{y} \right)^{\beta} g^2(y)$$

a.e. in $(0, \infty) \times (0, \infty)$. Then we have

$$\delta f^2(x) = \beta y g^2(y), \text{ a.e. in } (0, \infty) \times (0, \infty).$$

Hence we obtain

$$\delta f^2(x) = \beta y g^2(y) = \text{const} \quad \text{a.e. in } (0, \infty) \times (0, \infty).$$

Thus

$$\int_0^\infty f^2(x)dx = \frac{1}{\delta} \int_0^\infty dx = \frac{1}{\delta} \int_0^\infty dx,$$

which contradicts the facts that $0 < \int_0^\infty f^2(x)dx < \infty$. Hence (2.2) takes the form of strict inequality. So we have (2.1).

Assume that the constant factor $A = -\frac{1}{2} \ln s \frac{a}{a+2s} ds \in (2.1)$ is not the best possible, then exists a positive number K kith $K < A$ and $a > 0$, we have

$$\int_{a}^{\infty} x^{\frac{\alpha}{2}} y^{\frac{\alpha}{2}} \left| \ln x^\alpha - \ln y^\alpha \right| f(x) g(y) dx dy < K \left(\int_{a}^{\infty} f^2(x) dx \int_{a}^{\infty} g^2(x) dx \right)^{\frac{1}{2}} \quad (2.3)$$

For $0 < \varepsilon < 1$, setting $b > 0 (b < a)$, $f_\varepsilon(x) = x^{-\varepsilon \frac{\alpha}{2}}$, for $x \in (b, \infty)$; $f_\varepsilon(x) = 0$, for $x \in (0, b)$. $g_\varepsilon(y) = y^{-\varepsilon \frac{\alpha}{2}}$, for $y \in (b, \infty)$; $g_\varepsilon(y) = 0$, for $y \in (0, b)$. Since,

$$K \left(\int_{a}^{\infty} f^2(x) dx \int_{a}^{\infty} g^2(x) dx \right)^{\frac{1}{2}} = K \int_{a}^{\infty} x^{-1} dx = K \frac{1}{\varepsilon a^\alpha},$$

setting $y = ux$, we find

$$\int_{a}^{\infty} x^{\frac{\alpha}{2}} y^{\frac{\alpha}{2}} \left| \ln x^\alpha - \ln y^\alpha \right| f_\varepsilon(x) g_\varepsilon(y) dx dy = \int_{a}^{\infty} x^{\frac{\alpha}{2}} y^{\frac{\alpha}{2}} \left| \ln x^\alpha - \ln y^\alpha \right| x^{-\varepsilon \frac{\alpha}{2}} y^{-\varepsilon \frac{\alpha}{2}} dx dy = \int_{a}^{\infty} u^{-\varepsilon \frac{\alpha}{2}} \left| \ln u^\alpha \right| y^{-\varepsilon \frac{\alpha}{2}} x^{-\varepsilon \frac{\alpha}{2}} dx du.$$

By (2.3) and for $b \to 0^+$, we have

$$\int_{a}^{\infty} u^{-\varepsilon \frac{\alpha}{2}} \left| \ln u^\alpha \right| x^{-\varepsilon \frac{\alpha}{2}} u^{-\varepsilon \frac{\alpha}{2}} dx du \leq K \frac{1}{a^\alpha}.$$
or
\[
\int_0^\infty \frac{u^{a-1} |\ln u^a|}{1 + u^a + \min \{1, u^a\}} u^{\frac{2}{\alpha}} du \leq K
\]
when \(\varepsilon \to 0^+ \), we have the following equality
\[
\int_0^\infty \frac{u^{a-1} |\ln u^a|}{1 + u^a + \min \{1, u^a\}} u^{\frac{2}{\alpha}} du = \int_0^\infty \frac{u^{\frac{2}{\alpha}} |\ln u^a|}{1 + u^a + \min \{1, u^a\}} du + 0(1) = A + 0(1).
\]

It follows the \(A \leq K \), which contradicts the hypothesis. Hence the constant factor \(A \) in (2.1) is the best possible depent on \(\alpha \geq 1 \).

Theorem 2.2. Suppose \(f \geq 0 \) and \(0 < \int_0^\infty f^2(x)dx < \infty \). Then
\[
\int_0^\infty \int_0^\infty \left[\frac{x^{a-1} y^{a-1}}{x^a + y^a + \min \{x^a, y^a\}} |\ln x^a - \ln y^a| f(x)dx \right]^2 dy < A^2 \int_0^\infty f^2(x)dx \quad (2.4)
\]
where the constant factor \(A^2 \) is the best possible depent on \(\alpha \geq 1 \). Inequality (2.4) is equivalent to (2.1).

Proof. Let
\[
g(y) = \int_0^\infty \frac{x^{a-1} y^{a-1}}{x^a + y^a + \min \{x^a, y^a\}} |\ln x^a - \ln y^a| f(x)dx,
\]
then by (2.2), we have the following inequality.
\[
0 < \int_0^\infty g^2(y)dy = \int_0^\infty \int_0^\infty \left[\frac{x^{a-1} y^{a-1}}{x^a + y^a + \min \{x^a, y^a\}} |\ln x^a - \ln y^a| f(x)dx \right]^2 dy
\]
\[
= \int_0^\infty \int_0^\infty \frac{x^{a-1} y^{a-1}}{x^a + y^a + \min \{x^a, y^a\}} f(x)g(y)dydx
\]
\[
\leq \left(\int_0^\infty f^2(x)dx \right) \left(\int_0^\infty g^2(x)dx \right)^\frac{1}{2}.
\]
Hence we have
\[
\int_0^\infty \int_0^\infty \frac{x^{a-1} y^{a-1}}{x^a + y^a + \min \{x^a, y^a\}} |\ln x^a - \ln y^a| f(x)dx \leq A^2 \int_0^\infty f^2(x)dx < \infty. \quad (2.6)
\]
By (2.1), both (2.5) and (2.6) take the form of strict inequality, so we have (2.4). On the other hand, suppose that (2.4) is valid. By Hölder’s inequality, we find
By (2.4), we have (2.1). Thus (2.1) and (2.4) equivalent. If the constant A^2 in (2.4) not the best possible, by (2.7), we may get a contradiction that the constant factor in (2.1) is not the best possible. This completes the proof.

References