Computable points in co-c.e. polyhedra
Zvonko Iljazović and Marijana Bradaš
Department of Mathematics, Faculty of Science, University of Zagreb, Croatia

Abstract
Co-c.e. sets need not be computable, moreover they need not contain any computable point. Co-c.e. polyhedra also do not have to be computable. However, each co-c.e. polyhedron P contains computable points, in fact we prove that computable points are dense in P.

Keywords: Computable point; Co-c.e. set; Polyhedron

Mathematics Subject Classification: 03D78

Type (Method/Approach)
Research article

INTRODUCTION

A closed subset S of \mathbb{R}^n is co-c.e. (co-computably enumerable) if the complement of S can be effectively covered by rational open balls. A closed subset S of \mathbb{R}^n is computable if S can be effectively approximated by a finite set of rational points with arbitrary given precision on arbitrary given bounded region of \mathbb{R}^n. Each computable set is co-c.e., but a co-c.e. set need not be computable. Moreover, while computable points in a computable set are dense, there exists a nonempty co-c.e. set which does not contain any computable point [10].

However, there are certain conditions under which a co-c.e. set is computable and there are also certain conditions under which a (not necessarily computable) co-c.e. set contains computable points. In particular, if S is a co-c.e. set in \mathbb{R}^n which is homeomorphic to the unit closed ball B^m in \mathbb{R}^m for some $m \in \mathbb{N}$, then S need not be computable, but S contains computable points, moreover they are dense in S [7].

Some other properties of a co-c.e. set S can also assure that S has a computable point or that S is computable, for example if S is a topological sphere [7], graph of a certain function [1], chainable or circularly chainable continuum [4], compact manifold with boundary [5] or 1-manifold with boundary [3].

On the other hand, in [6] is constructed a contractible co-c.e. set in \mathbb{R}^2 which does not contain any computable point.

In this paper we observe polyhedra. A polyhedron is a subset of Euclidean space obtained by gluing simplices along their faces in an appropriate way. Each simplex is an polyhedron, in particular each line segment is a polyhedron and by [7] there exists a co-c.e. line segment which is not computable. Hence co-c.e. polyhedra need not be computable. Using results from [7] and some geometric properties of polyhedra we prove that each co-c.e. polyhedron contains computable points and that they are dense in it.

PRELIMINARIES

Let $k \in \mathbb{N} \setminus \{0\}$. A function $F : \mathbb{N}^k \rightarrow \mathbb{Q}$ is called computable if there exist computable (recursive) functions $a, b, c : \mathbb{N}^k \rightarrow \mathbb{N}$ such that

$$F(x) = (-1)^{a(x)} \frac{a(x)}{b(x) + 1}$$

for each $x \in \mathbb{N}^k$ [9].

A number $x \in \mathbb{R}$ is said to be computable if there exists a computable function $g : \mathbb{N} \rightarrow \mathbb{Q}$ such that

$$|x - g(i)| < 2^{-i}$$
for each \(i \in \mathbb{N} \). A point \((x_1, \ldots, x_n)\) in \(\mathbb{R}^n\) is said to be computable if \(x_1, \ldots, x_n\) are computable numbers.

Let \(n \in \mathbb{N} \setminus \{0\} \). A sequence \((x_i)\) in \(\mathbb{Q}^n\) is said to be computable if the component sequences of \((x_i)\) are computable (as sequences in \(\mathbb{Q}\), i.e. as functions \(\mathbb{N} \to \mathbb{Q}\)).

Let \(S \) be a closed subset of \(\mathbb{R}^n\). We say that \(S \) is co-computably enumerable (co-c.e.) \([2]\) if \(S = \mathbb{R}^n \) or if there exists a computable sequence \((x_i)\) in \(\mathbb{Q}^n\) and a computable sequence \((r_i)\) in \(\mathbb{Q}\) such that \(r_i > 0 \) for each \(i \in \mathbb{N}\) and such that

\[
\mathbb{R}^n \setminus S = \bigcup_{i \in \mathbb{N}} B(x_i, r_i).
\]

Here, for \(x \in \mathbb{R}^n \) and \(r > 0\), by \(B(x, r) \) we denote the open ball in \(\mathbb{R}^n\) with radius \(r \) centered in \(x\), i.e. \(B(x, r) = \{ y \in \mathbb{R}^n \mid d(y, x) < r \} \) (\(d \) is the Euclidean metric on \(\mathbb{R}^n\)). By \(\overline{B}(x, r) \) we will denote the corresponding closed ball. It is not hard to prove the following proposition (see \([11]\)).

Proposition 2.1

1. Let \(x \in \mathbb{Q}^n\) and \(r \in \mathbb{Q}, r > 0\). Then \(\overline{B}(x, r) \) is a co-c.e. set in \(\mathbb{R}^n\).
2. Suppose \(S \) and \(T \) are co-c.e. sets in \(\mathbb{R}^n\). Then \(S \cap T \) is a co-c.e. set.

Let \(n, N \in \mathbb{N}, N \geq 1 \). Let \(a_0, \ldots, a_n \) be geometrically independent points in \(\mathbb{R}^N\) (i.e. points such that \(a_1 - a_0, \ldots, a_n - a_0 \) are linearly independent vectors). Then the convex hull \(\sigma \) of the set \(\{a_0, \ldots, a_n\} \) is called \(n\) - simplex in \(\mathbb{R}^N\) spanned by \(a_0, \ldots, a_n\). We say that \(a_0, \ldots, a_n \) are vertices of \(\sigma \) and we say that \(n \) is the dimension of \(\sigma \). It is known that the set of vertices \(\{a_0, \ldots, a_n\} \) and the number \(n \) are uniquely determined by \(\sigma \) and that \(\sigma \) can be described as the set of all points \(x \in \mathbb{R}^N\) of the form

\[
x = \sum_{i=0}^{n} t_i a_i ,
\]

where \(t_0, \ldots, t_n \) are non-negative real numbers such that \(\sum_{i=0}^{n} t_i = 1\), see \([8]\).

If \(\sigma \) is a simplex with vertices \(a_0, \ldots, a_n \) and \(i_0, \ldots, i_k \) numbers such that \(0 \leq i_0 < \cdots < i_k \leq n\), then the simplex spanned by the points \(a_{i_0}, \ldots, a_{i_k}\) is called a face of \(\sigma \). If \(\tau \) is a face of \(\sigma \) and \(\tau \neq \sigma\), then we say that \(\tau \) is a proper face of \(\sigma \). The union of all proper faces of \(\sigma \) is denoted by \(\text{Bd} \sigma \) and it is called the boundary of \(\sigma \). The set \(\sigma \setminus \text{Bd} \sigma \) is called the interior of \(\sigma \) and it is denoted by \(\text{Int} \sigma \). In general, \(\text{Bd} \sigma \) is not the topological boundary of \(\sigma \) in \(\mathbb{R}^N\) and \(\text{Int} \sigma \) is not the topological interior of \(\sigma \) in \(\mathbb{R}^N\).

A plane in \(\mathbb{R}^N\) is a subset of the form \(a + W\), where \(a \in \mathbb{R}^N\) and \(W \) is a vector subspace of \(\mathbb{R}^N\). Suppose \(a_0, \ldots, a_n \) are geometrically independent points in \(\mathbb{R}^N\). Let \(W \) be a vector subspace of \(\mathbb{R}^N\) generated by vectors \(a_1 - a_0, \ldots, a_n - a_0\) and let \(\pi = a_0 + W\). We say that \(\pi \) is the plane spanned by \(a_0, \ldots, a_n\). It is easy to see that

\[
\pi = \left\{ \sum_{i=0}^{n} t_i x_i \middle| t_0, \ldots, t_n \in \mathbb{R}, \sum_{i=0}^{n} t_i = 1 \right\}.
\]
Therefore $\sigma \subseteq \tau$, where σ is the simplex spanned by a_0, \ldots, a_n.

Let K be a nonempty finite family of simplices in \mathbb{R}^N. We say that K is a simplicial complex in \mathbb{R}^N if the following holds:

1. if $\sigma \in K$ and τ is a face of σ, then $\tau \in K$;
2. if $\sigma, \tau \in K$ and $\sigma \cap \tau \neq \emptyset$, then $\sigma \cap \tau$ is a face of σ and τ.

If K is a simplicial complex, let

$$|K| = \bigcup_{\sigma \in K} \sigma.$$

A subset P of \mathbb{R}^N is said to be a polyhedron if there exists a simplicial complex K such that $P = |K|$.

In the following proposition we state some elementary properties of simplicies and simplical complexes (see [8]).

Proposition 2.2

1. Let σ be a simplex in \mathbb{R}^N. Then σ is a compact set and $\operatorname{Int} \sigma$ is a dense set in σ. Suppose a_0, \ldots, a_n are vertices of σ and let π be the plane spanned by these points. Then $\operatorname{Int} \sigma$ is an open set in π.
2. Let K be a simplical complex in \mathbb{R}^n. Then for each $x \in |K|$ there exists unique $\sigma \in K$ such that $x \in \operatorname{Int} \sigma$.

CO-C.E. POLYHEDRA

In this section we prove that computable points in a co-c.e. polyhedron are dense. First we need the following simple lemma.

Lemma 3.1 Let π be a plane in \mathbb{R}^N, $x \in \mathbb{R}^N$ and $r > 0$ such that $d(x, \pi) < r$. Then $\overline{B}(x, r) \cap \pi$ is a closed ball in π.

Proof. Let x_0 be the orthogonal projection of x to π, i.e. the point $x_0 \in \pi$ such that the vectors $x - x_0$ and $y - x_0$ are orthogonal for each $y \in \pi$. Then for each $y \in \pi$ we have

$$(d(x, y))^2 = (d(x, x_0))^2 + (d(x_0, y))^2. \tag{1}$$

Since $d(x, \pi) = d(x, x_0)$ the number $s = \sqrt{r^2 - (d(x, x_0)^2)}$ is positive. Let $\overline{B}_\pi(x_0, s)$ be the closed ball in π (with respect to the Euclidean metric on π) centered in x_0 with radius s. It is easy to conclude from (1) that

$$\overline{B}(x, r) \cap \pi = \overline{B}_\pi(x_0, s).$$

Lemma 3.2 Let K be a simplicial complex in \mathbb{R}^N. Suppose $x \in |K|$ is a point with the following property: there exists unique $\sigma \in K$ such that $x \in \sigma$. Then for each $\varepsilon > 0$ there exist $a \in \mathbb{Q}^n$ and $v \in \mathbb{Q}$, $v > 0$ such that $d(x, a) < \varepsilon$ and $v < \varepsilon$ and such that the set $\overline{B}(a, v) \cap |K|$ is homeomorphic to the unit closed ball B^n in \mathbb{R}^n for some $n \in \mathbb{N}$.

Proof. Let $\varepsilon > 0$. Let $\sigma \in K$ be such that $x \in \sigma$. Let a_0, \ldots, a_n be the vertices of σ and let π be the plane spanned by these points.

By the assumption of the lemma, for each $\tau \in K$ such that $\tau \neq \sigma$ we have $x \notin \tau$ and since τ is closed in \mathbb{R}^N (by Proposition 2.2(ii)) there exists $r > 0$ such that $B(x, r) \subseteq \mathbb{R}^N \setminus \tau$. There are only finitely many simplices in K and therefore there exists $r > 0$ such that
for each \(\tau \in K \) such that \(\tau \neq \sigma \). It follows that

\[
B(x, r) \cap \tau = \emptyset
\]

(2)

Note that \(x \in \text{Int} \sigma \). Otherwise we have \(x \in \text{Bd} \sigma \) and therefore there exists a proper face \(\tau \) of \(\sigma \) such that \(x \in \tau \). Hence \(x \in \tau \), \(x \in \sigma \) and \(\tau \neq \sigma \) which contradicts the assumption of the lemma. Since \(\text{Int} \sigma \) is open in \(\pi \) (by Proposition 2.2(i)), there exists \(s > 0 \) such that

\[
B(x, s) \cap \pi \subseteq \text{Int} \sigma
\]

and consequently

\[
B(x, s) \cap \pi = B(x, s) \cap \sigma.
\]

(3)

Let \(t = \min \{ r, s, \varepsilon \} \). It follows from (2) and (3) that

\[
B(x, t) \cap K = B(x, t) \cap \sigma \quad \text{and} \quad B(x, t) \cap \pi = B(x, t) \cap \sigma
\]

and therefore

\[
B(x, t) \cap K = B(x, t) \cap \pi.
\]

(4)

Let us choose \(a \in Q^N \) and \(v \in Q \), \(v > 0 \), such that \(d(x, a) < \frac{t}{4} \) and \(\frac{t}{4} < v < \frac{t}{2} \). Then

\[
d(a, \pi) \leq d(a, x) < \frac{t}{4} < v
\]

and it follows from Lemma 3.1 that \(\overline{B}(a, v) \cap \pi \) is a closed ball in \(\pi \). On the other hand, inequalities \(d(x, a) < \frac{t}{4} \) and \(v < \frac{t}{2} \) easily imply

\[
\overline{B}(a, v) \subseteq B(x, t).
\]

(5)

It follows from (4) and (5) that

\[
\overline{B}(a, v) \cap K = \overline{B}(a, v) \cap \pi.
\]

(6)

In general, if \(W \) is an \(n \)-dimensional vector subspace of \(R^N \), then \(W \) is isometrically homeomorphic to \(R^n \) (since \(W \) has orthonormal basis; if \(n = 0 \) we take \(R^0 = \{ 0 \} \)). The same holds for \(a + W \) for any \(a \in R^N \). Therefore \(\pi \) is isometrically homeomorphic to \(R^n \) and consequently each closed ball in \(P \) is isometrically homeomorphic to a closed ball in \(R^n \). Since each closed ball in \(R^n \) is homeomorphic to the unit closed ball \(B^n \) and \(\overline{B}(a, v) \cap \pi \) is a closed ball in \(\pi \), we have that \(\overline{B}(a, v) \cap \pi \) is homeomorphic to \(B^n \). Hence, by (6),

\[
\overline{B}(a, v) \cap K
\]

is homeomorphic to \(B^n \). Since \(t \leq \varepsilon \), we have \(d(x, a) < \varepsilon \) and \(v < \varepsilon \).

\[\square \]

Theorem 3.3 Let \(P \) be a polyhedron in \(R^N \). Suppose \(P \) is a co-c.e. set. Then the set of all computable points in \(P \) is dense in \(P \).

Proof. Let \(K \) be a simplicial complex in \(R^N \) such that \(P = |K| \). Let \(S \) be the set of all \(x \in P \) which have the following property: there exists unique \(\sigma \in K \) such that \(x \in \sigma \). Then \(S \) is a dense set in \(P \).
Namely, let \(y \in P \) and \(\varepsilon > 0 \). Let \(\sigma \in K \) be a simplex of largest dimension such that \(y \in \sigma \). Since \(\text{Int} \sigma \) is dense in \(\sigma \) (Proposition 2.2), there exists \(x \in \text{Int} \sigma \) such that

\[
d(y, x) < \varepsilon.
\]

(7)

Suppose \(x \in \tau \) for some \(\tau \in K \). Then

\[
x \in \sigma \cap \tau
\]

(8)

and it follows that \(\sigma \cap \tau \) is a face of \(\sigma \) and \(\tau \).

Suppose \(\sigma \cap \tau \) is a proper face of \(\sigma \). Then (8) implies \(x \in \text{Bd} \sigma \) which is impossible since \(x \in \text{Int} \sigma \). Hence \(\sigma \cap \tau = \sigma \) and it follows that \(\sigma \) is a face of \(\tau \).

Suppose \(\sigma \) is a proper face of \(\tau \). Then the dimension of \(\sigma \) is less than the dimension of \(\tau \) and this, together with \(y \in \sigma \subseteq \tau \), contradicts the fact that \(\sigma \) is a simplex in \(K \) of largest dimension such that \(y \in \sigma \). Therefore \(\sigma = \tau \) and this means that \(\sigma \) is a unique simplex in \(K \) which contains \(x \). Hence \(x \in S \) and this together with (7) proves that \(S \) is dense in \(P \).

Now we claim that for each \(x \in S \) and each \(\varepsilon > 0 \) there exists a computable point \(z \in P \) such that \(d(x, z) < \varepsilon \). This and the fact that \(S \) is dense in \(P \) will imply that the set of all computable points in \(P \) is dense in \(P \).

Let \(x \in S \) and \(\varepsilon > 0 \). By Lemma 3.2 there exist \(a \in \mathbb{Q}^n \) and \(v \in \mathbb{Q} \), \(v > 0 \), such that \(d(x, a) < \frac{\varepsilon}{2} \) and \(v < \frac{\varepsilon}{2} \) and such that \(\overline{B}(a, v) \cap P \) is homeomorphic to \(B^n \) for some \(n \in \mathbb{N} \). This and the fact that \(\overline{B}(a, v) \cap P \) is a co-c.e. set in \(\mathbb{R}^n \), which follows from Proposition 2.1, imply by [7] that \(\overline{B}(a, v) \cap P \) contains a computable point. Hence there exists a computable point \(z \in P \) such that \(z \in \overline{B}(a, v) \). Now \(d(x, a) < \frac{\varepsilon}{2} \) and \(d(a, z) \leq v < \frac{\varepsilon}{2} \)

give \(d(x, z) < \varepsilon \).

\[\Box \]

REFERENCES

