Hyperconnectedness in Ideal Supra Topological Spaces

Adiya K. Hussein

Dept. of Maths., College of Basic Education, Al-Mustansiryah University, Baghdad, Iraq

Abstract

The aim of this paper is to introduce and study hyperconnectedness in ideal supra topological spaces (briefly iS – hyperconnectedness). Characterizations and properties of iS – hyperconnectedness are provided and preservation functions of iS – hyperconnectedness are investigated.

Keywords

iS – hyperconnectedness, iS – dense set, iS – nowhere dense set, ideal topological space.

SUBJECT CLASSIFICATION

54A05, 54A10, 54C08, 54C10.

INTRODUCTION

The notion of ideal in topological space was first introduced by Kuratowski[1] and Vaidyanathswamy[2]. Further properties of ideal topological spaces was investigated by Jankovic and Hamlett [3]. Applications to many fields were investigated in [4],[5],[6],[7],[8], etc. The concept of hyperconnectedness[9] or equivalently D- spaces[10], semi-connected spaces[11], s-connected spaces[12] and irreducible spaces[13] was investigated and studied in the literature. In 1983 A. S. Mashhour et al. [14] developed the notion of supra topological spaces and studied the concept of supra- continuity. Ideal on supra spaces is investigated by Modak and Mistry[15]. Ekici [16] introduced and studied hyperconnectedness in ideal topological spaces. In [17] further properties of ideal supra topological spaces are investigated. This paper aimed to introduce and study the concept of hyperconnectedness in ideal supra topological spaces, we named by iS – hyperconnectedness. The notions of iS – dense set, iS – nowhere dense set are introduced. Properties and characterizations of iS – hyperconnectedness in ideal supra topological space are provided and preservation functions are investigated.

1. Preliminaries

Throughout this paper X and Y will denote topological spaces which has no separation axioms, unless otherwise stated. The closure and interior of a subset A in X is denoted by $\text{cl}(A)$ and $\text{int}(A)$ respectively. A topological space X is hyperconnected [9] if every pair of nonempty open sets of X has nonempty intersection. Ideal on X is defined in [15] and supra topological space (X, S) is defined and studied in [14], we will denote it by XS. The members of S are called supra-open (S-open) sets and its complement is supra-closed (S-closed). Let (X, τ) be a topological space. “The S – interior and S – closure of A in (X, S) are denoted as $\text{int}_S(A)$ and $\text{cl}_S(A)$ respectively [14].

Theorem 2.1. [14] In XS, if $A \subseteq X$. Then

1. $\text{int}_S(A) \subseteq A$.
2. $\text{int}_S(A) = A$ “if and only if” $A \in S$.
3. $A \subseteq \text{cl}_S(A)$.
4. $X \setminus \text{int}_S(A) \subseteq \text{cl}_S(X \setminus A)$
5. $\text{cl}_S(A) = A$ if and only if A is supra closed.
6. $x \in \text{cl}_S(A)$ if and only if every supra-open set U containing x, $U \cap A \neq \emptyset$.

An XS with an ideal I on X is called an ideal supra topological space [15] or simply XS_I.

Definition 2.2 [15]
For the space XS_I, the S-local function $(,)^*: P(X) \to P(X)$ of I on X with respect to S and I is given by

$$(A)^* (I, S) = \{ x \in X : U \cup A \not\in I, U \in S \} \text{ for } A \subseteq X \text{ and } S(x) = \{ U \in S : x \in U \}. \text{ For simplicity we use } A^*. \text{ }$$

Definition 2.3 [17]
For XS_I, the set operator cl^* is called a $(*, S)$-supra closure and is defined as $cl^*(A) = A \bigcup A^* \text{ for } A \subseteq X$. The supra topology S^{τ} is finer than S, generated by cl^*. $S^{\tau} = \{ U \subseteq X : cl^*(X \cup U) = X \cup U \}$. For any ideal supra space XS_I, the collection $\{ U \setminus G : U \in S, G \in I \}$ is a base for S^{τ}. The elements of S^{τ} are called $S^* - \text{open}$ and the complement of an $S^* - \text{open}$ set is called $S^* - \text{closed}$. Some properties of S-local function are given in the following.

Proposition 2.4 [5]
In XS_I, if A, B be any subsets of X, then,

1. $A \subseteq B \Rightarrow A^* \subseteq B^*$.
2. $A^* = cl^*_S(A) \subseteq cl^*_S(A)$.

Proposition 2.5
For XS_I, if A, B are any subsets of X then,

1. $A \subseteq cl^* (A)$. [17]
2. If $A \subseteq B$ then $cl^*(A) \subseteq cl^*(B)$.

Proof.
(2): Follows from Proposition 2.4 and the definition of cl^*.

Definition 2.6
If A is a subset of XS, then A is S-pre-[18] (resp. S-semi-[19], S-b-[20], S-β-[21], S-regular-[19]) open, briefly $p_A = (\text{resp. } s_A, s_A, \beta_A, r_A)$ open, if $A \subseteq \text{int}_S(cl^*_S(A)) \text{ (resp. } A \subseteq \text{cl}^*_S(\text{int}_S(A)), A \subseteq \text{cl}^*_S(\text{int}_S(A)) \bigcup \text{int}_S(\text{cl}^*_S(A)), A \subseteq \bigcup \text{int}_S(\text{cl}^*_S(A)) \text{, } A \subseteq \text{int}_S(\text{cl}^*_S(A)) \text{).}$

Definition 2.7
For XS_I and $A \subseteq X$, A is an

S-I^* (resp. S-pre-I^*, S-semi-I^*, S-b-I^*, S-β-I^*) open set, briefly SIO (resp. p_I, s_I, β_I, r_I) if $A \subseteq \text{int}_S(A)$ $\bigcup \text{int}_S(A) \subseteq \text{cl}^*_S(A)$ (resp. $A \subseteq \text{int}_S(\text{cl}^*_S(A))$, $A \subseteq \text{cl}^*_S(\text{int}_S(I)) \bigcup \text{int}_S(\text{cl}^*_S(I))$, $A \subseteq \text{cl}^*_S(\text{int}_S(I)) \bigcup \text{int}_S(\text{cl}^*_S(I))$). The complements of the above mentioned sets are called their respective closed sets and denoted by Slc (resp. p_I, s_I, β_I, r_I).

Remark 2.8
S-openness and Slc are independent as illustrate in the next example.

Example 2.9
Let $X=\{a, b, c\}$, $S=\{X, \emptyset, \{a, b, c\}\}$, $I=\{\emptyset, \{b\}\}$. Then, $\{a, b\}$ is S-open but not Slc and (c) is Slc but not S-open.

Proposition 2.10
For $A \subseteq X$ where X is an XS_I, then each p_I, r_I (resp. s_I, b_I, β_I, r_I) set is p_I, r_I (resp. s_I, b_I, β_I, r_I) open.

Proof.
Suppose that A is a p_I set. Hence $A \subseteq \text{int}_S(\text{cl}^*_S(A)) \subseteq \text{int}_S(\text{cl}^*_S(A))$. Hence A is p_I open.
We can follow the same method to demonstrate the remaining cases.

Proposition 2.11
In XS_i "The following implications" are true for any $A \subset X$.

1. $p_i I_o \Rightarrow b_i I_o \Rightarrow \beta_i I_o$.
2. $s_i I_o \Rightarrow b_i I_o \Rightarrow \beta_i I_o$.

Proof.
This is obvious from Definition 2.7.

3. *Hyperconnected Spaces.*

Definition 3.1
For $A \subset X$ where X is XS_i, then A is

1. iS - dense if $cl^*(A) = X$.
2. iS - nowhere dense if $int_i(cl^*(A)) = \phi$.

Definition 3.2. [22] An XS space is,

1. S- hyperconnected if each S- open set $A \neq \phi$ of X is S- dense, that is $cl_s(A) = X$.
2. S- connected if $X \neq A \cup B$ where A (resp. B) is nonempty S- open sets of X.

Definition 3.3
An XS_i is,

1. iS - hyperconnected if any S- open set $A \neq \phi$ is iS - dense.
2. iS - connected if $X \neq A \cup B$ where A (resp. B) is a nonempty S- (resp. S^*) open sets of X.

Remark 3.4
From Definitions 3.3 and the facts that every S- hyperconnected is S- connected, we have:

\[XS_i \text{ is } iS \text{- hyperconnected } \Rightarrow XS_i \text{ is } S \text{- hyperconnected} \]

\[\Rightarrow \]

\[XS_i \text{ is } iS \text{- connected } \Rightarrow XS_i \text{ is } S \text{- connected} \]

Reverse trends are generally incorrect as shown below.

Example 3.5
Let $X= \{a, b, c\}$, $S= \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ and $I= \{\phi, \{b\}\}$. Then XS_i is S - hyperconnected but XS_i is not iS – connected.

Example 3.6
Let $X= \{a, b, c\}$, $S= \{X, \phi, \{a\}, \{a, b\}, \{b, c\}\}$ and $I= \{\phi, \{a\}\}$. Then XS_i is iS – connected but XS is not S - hyperconnected.

Definition 3.7
If A is a subset of XS_i, then A is called supra semi-1-open (briefly $s_i I_o$) if $A \subset cl_s(int^*(A))$ and its complement is called semi-1-closed (briefly $s_i I_c$)
Proof.
If A is an \mathcal{S}_I set. Then $A \subseteq cl^\prec (\text{int}_s (A)) \subseteq cl^\prec (\text{int}^* (A))$. Hence A is \mathcal{S}_I.

The reverse direction is generally incorrect as shown below.

Example 3.9
Let $X= \{a, b, c, d\}$, $S = \{X, \emptyset, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $I = \{\emptyset, \{c\}\}$. Then $\{b, d\}$ is \mathcal{S}_I but not \mathcal{S}_I.

Lemma 3.10
A subset A of XS_I is \mathcal{S}_I if and only if there exists $U \in S$ such that $U \subseteq A \subseteq cl^\prec (U)$.

Proof.
If A is \mathcal{S}_I. Then $A \subseteq cl^\prec (\text{int}_s (A))$. Put $U = \text{int}_s (A)$. Then $U \subseteq A \subseteq cl^\prec (U)$.

Conversely, let $U \subseteq A \subseteq cl^\prec (U)$ for $U \in S$. Since $U \subseteq A$, then $U \subseteq \text{int}_s (A)$. Therefore $cl^\prec (U) \subseteq cl^\prec (\text{int}_s (A))$ and hence $A \subseteq cl^\prec (\text{int}_s (A))$. Thus A is \mathcal{S}_I.

Lemma 3.11
A subset A of XS_I is \mathcal{S}_I if and only if there exists $U \in S \tau$, such that $U \subseteq A \subseteq cl^\prec (U)$.

Proof.
Similar to that of Lemma 3.10.

Theorem 3.12
In XS_I, the following are equivalent:

(a) X is \mathcal{S}_I—hyperconnected.

(b) A is \mathcal{S}_I—dense or \mathcal{S}_I—nowhere dense, for every subset A of X.

(c) $A \cap B \neq \emptyset$ for any S-open set $\emptyset \neq A \subseteq X$ and any S^*-open set $\emptyset \neq B \subseteq X$.

(d) $A \cap B \neq \emptyset$, where $\emptyset \neq A \subseteq X$ is any \mathcal{S}_I set and $\emptyset \neq B \subseteq X$ is any \mathcal{S}_I set.

Proof.
(a) \Rightarrow (b): Let X be \mathcal{S}_I—hyperconnected. Suppose that the subset A is not \mathcal{S}_I—nowhere dense. Then $cl^\prec (X \setminus cl^\prec (A)) = \text{int}_s (cl^\prec (A)) \neq X$. Since $\text{int}_s (cl^\prec (A)) \neq \emptyset$, so by (a), $cl^\prec (\text{int}_s (cl^\prec (A))) = X$. Since $cl^\prec (\text{int}_s (cl^\prec (A))) = X \subseteq cl^\prec (A)$, then $cl^\prec (A) = X$. Hence A is \mathcal{S}_I—dense.

(b) \Rightarrow (c): "Suppose" that $A \subseteq S$ and $B \subseteq S \tau$ are disjoint. Then $cl^\prec (A) \cap B = \emptyset$ and A is not \mathcal{S}_I—dense. Since $\emptyset \neq A \subseteq S$, so $A \subseteq \text{int}_s (cl^\prec (A))$ and A is not \mathcal{S}_I—"nowhere dense". This is a contradiction. Hence $A \cap B \neq \emptyset$.

(c) \Rightarrow (d): Suppose that $\emptyset \neq A \subseteq S$ and $\emptyset \neq B$ are disjoint where A is \mathcal{S}_I set and B is \mathcal{S}_I set. By Lemmas (3.10) and (3.11), there are $H \subseteq S$ and $M \subseteq S \tau$, such that $H \subseteq A \subseteq cl^\prec (H)$ and $M \subseteq A \subseteq cl^\prec (M)$. But A and B are nonempty, hence H and M are nonempty. But $H \cap M \subseteq A \cap B = \emptyset$. This is a contradiction.

(d) \Rightarrow (a): Let the intersection of A and B be empty, where A is any nonempty \mathcal{S}_I set and B is any nonempty \mathcal{S}_I set. Since every S-open set is \mathcal{S}_I and every S^*-open set is \mathcal{S}_I. Then X is \mathcal{S}_I—hyperconnected.

Definition 3.13
The supra semi"$-I-cl$ (resp., $S-semi-I-cl$, $S-pre-I-cl$, $S-\beta-I-cl$) of a subset A of XS_I, symbolized it as, $\mathcal{S}_I cl (\text{resp. } s_I cl, p_I cl, \beta_I cl)$ of A, is the intersection of all $s_I cl$ (resp. $s_I cl$, $p_I cl$, $\beta_I cl$) sets of X containing A.
Lemma 3.14
For a subset K of XSt, we have

(1) \(s_i Icl(K) = K \cup int_s(cl^*(K)) \).
(2) \(s_Icl(K) = K \cup int^*(cl_s(K)) \).
(3) \(p_s Icl(K) = K \cup cl_s(int^*(K)) \).
(4) \(\beta_s Icl(K) = K \cup int^*(cl_s(int^*(K))) \).

Proof.
(4) The proof is similar to that of Lemma 13[16]. That is, since \(\beta_s Icl(K) \) is \(\beta_s Ic \), then, \(\beta_s Icl(K) \) is \(\beta_s Ic \) containing \(K \). S \(\beta_s Icl(K) \) is \(\beta_s Ic \) containing \(K \).
(5) \(\beta_s Icl(K) = K \cup int^*(cl_s(int^*(K))) \).

Similarly we can prove (1), (2) and (3).

Theorem 3.15
In XSt the following are equivalent:

(1) \(X \) is \(iS - hyperconnected \).
(2) \(A \) is \(iS - dense \) for any \(\beta_s Io \) set \(\phi \neq A \subset X \).
(3) \(A \) is \(iS - dense \) for any \(b_s Io \) set \(\phi \neq A \subset X \).
(4) \(A \) is \(iS - dense \) for any \(p_s Io \) set \(\phi \neq A \subset X \).
(5) \(s_s Icl(A) = X \) for any \(p_s Io \) set \(\phi \neq A \subset X \).
(6) \(p_s Icl(A) = X \) for any \(s_s Io \) set \(\phi \neq A \subset X \).

Proof. (1) \(\Rightarrow \) (2): Suppose that \(A \) is a nonempty \(\beta_s Io \) subset of \(X \). Then \(int_s(cl^*(A)) \neq \phi \). So \(X = cl^*(int_s(cl^*(A))) = cl^*(A) \).

(2) \(\Rightarrow \) (3): Since every \(b_s Io \) set is \(\beta_s Io \). So (3) hold.

(3) \(\Rightarrow \) (4): Since every \(p_s Io \) is \(b_s Io \). So (4) hold.

(4) \(\Rightarrow \) (5): Let \(A \) be a nonempty \(p_s Io \) subset of \(X \). Then by Lemma 3.14,

\[s_s Icl(A) = A \cup int_s(cl^*(A)) = A \cup int_s(X) = X. \]

(5) \(\Rightarrow \) (6): "Let \(A \) be a nonempty" \(s_s Io \) subset of \(X \). Then by (5) and Lemma 3.14,

\[X = s_s Icl(int_s(A)) = int_s(A) \cup int_s(cl^*(int_s(A))) \subset A \cup cl^*(int_s(A)) \subset A \cup cl_s(int^*(A)) \subset p_s Icl(A). \]

Hence \(p_s Icl(A) = X. \)

(6) \(\Rightarrow \) (1): Can be proved similarly.
4. Preservation Theorems of \(iS - \) hyperconnectedness

Definition 4.1
The supra- semi- \(I \) - interior of a subset \(A \) of \(XS_t \) (briefly \(S_j li(A) \)) is the union of all \(s_j Io \) sets of \(X \) included in \(A \).

Definition 4.2
(1) A "function" \(f : XS_t \rightarrow YS_2 \) is \(s_j I \) - continuous if for \(\forall \in S_2 \), \(f^{-1}(V) \) is an \(s_j Io \) set in \(XS_t \).

(2) A "function" \(f : XS_t \rightarrow YS_2 \) is said to be \(r_j I \) - continuous if for nonempty \(r_j \) - open set \(V \) of \(Y \), if \(f^{-1}(V) \neq \phi \) then \(s_j li (f^{-1}(V)) \neq \phi \).

Theorem 4.3
\(f : XS_t \rightarrow YS_2 \) is \(s_j I \) - continuous function \(\Rightarrow f \) is \(r_j I \) - continuous.

Proof.
If \(A \) be any \(r_j \) - open subset of \(Y \) such that \(f^{-1}(V) \neq \phi \). So \(f^{-1}(V) \) is a nonempty \(s_j Io \) in \(X \). Hence \(f^{-1}(V) = s_j li (f^{-1}(V)) \neq \phi \). Thus \(f \) is \(r_j I \) - continuous.

Theorem 4.4
If \(f : XS_t \rightarrow YS_2 \) is an onto \(r_j I \) - continuous and \(XS_t \) is \(iS \) - hyperconnected, then \(YS_2 \) is \(S \) - hyperconnected.

Proof.
If \(Y \) is not \(S \) - hyperconnected then there are disjoint nonempty supra open sets \(A \) and \(B \) in \(Y \) [22]. Put \(U = int_j (cl_j(A)) \) and \(V = int_j (cl_j(B)) \). Hence \(U = int_j (cl_j(U)) \) and \(V = int_j (cl_j(V)) \). Thus \(U \) and \(V \) are disjoint nonempty \(r_j \) - open sets. Hence \(s_j li(f^{-1}(U)) \cap s_j li(f^{-1}(V)) \subseteq f^{-1}(U) \cap f^{-1}(V) = \phi \). Since \(f \) is an \(r_j I \) - continuous onto, then \(s_j li(f^{-1}(U)) \neq \phi \) and \(s_j li(f^{-1}(V)) \neq \phi \). Hence, by Lemma 3.8 and Theorem 3.12, \(X \) is non \(iS \) - hyperconnected. This contradicts the assumption.

By Theorem 4.3 and Theorem 4.4 we get,

Corollary 4.5
If \(f : XS_t \rightarrow YS_2 \) is an \(s_j I \) - continuous onto and \(XS_t \) is \(iS \) - hyperconnected, then \(YS_2 \) is \(S \) - hyperconnected.

Definition 4.6. \(f : XS_t \rightarrow YS_2 \) is \(S \) - continuous function \(f^{-1}(V) \in S_j \) for all \(V \in S_2 \).

Remark 4.7
\(S \) - continuous \(\rightarrow s_j I \) - continuous. The reverse is incorrect as shown below.

Example 4.8
Let \(X = \{a, b, c, d\} \) and \(S_1 = S_2 = \{X, \phi, \{b\}, \{d\}, \{b, d\}\} \) and \(f : XS_t \rightarrow YS_2 \) defined as \(f(a) = a, f(b) = d, f(c) = d, f(d) = b \).

So \(f \) is \(s_j I \) - continuous but not \(S \) - continuous.

By Theorem 4.3 and Remark 4.7 we have the following,
Remark 4.9.
S-continuous $\Rightarrow s \mathcal{I}$ -continuous $\Rightarrow r \mathcal{I}$ - continuous.

By Theorem 4.4 and Remark 4.9, we get,

Corollary 4.10.
If $f : XS \mathcal{I} \to YS_2$ is onto S-continuous and $XS \mathcal{I}$ is iS - hyperconnected, then YS_2 is S- hyperconnected.

REFERENCES