A New Type of Fuzzy Implicative Ideals of a BH-Algebra

Husein Hadi Abbassa, Suad Abdulaali Neamahb

aDepartment of Mathematics, Faculty of Education for Girls
University of Kufa, Iraq

bDepartment of Mathematics, Faculty of Education for Girls
University of Kufa, Iraq

Abstract

In this paper, the fuzzy implicative ideal with respect to an element of a BH-algebra is introduced and some related properties are investigated. Some relationships among this notion and other types fuzzy ideals of BH-algebra are given.

Indexing terms/Keywords

BCI-algebra, BH-algebra, implicative ideal of BH-algebra, b-implicative ideal of BH-algebra, fuzzy ideal of BH-algebra.

1. INTRODUCTION

In this paper, we give the concept of the fuzzy implicative ideal A with respect to an element of a BH-algebra with some theorems, propositions and examples.

Definition (1.1): (K. ISEKI [7]) A BCI-algebra is an algebra \((X, *, 0)\) of type \((2, 0)\), where \(X\) is a nonempty set, \(*\) is a binary operation and 0 is a constant, satisfying the following axioms, \(\forall x, y, z \in X:\)

i. \((x * y) * (x * z) * (z * y) = 0,\)

ii. \((x * (x * y)) * y = 0,\)

iii. \(x * x = 0,\)

iv. \(x * y = 0 \text{ and } y * x = 0 \text{ imply } x = y.\)

Definition (1.2): (Y. B. Jun, E. H. Roh and H. S. Kim [8]) A BH-algebra is a nonempty set \(X\) with a constant 0 and a binary operation \(*\) satisfying the following conditions:

i. \(x * x = 0, \forall x \in X.\)

ii. \(x * y = 0 \text{ and } y * x = 0 \text{ imply } x = y, \forall x, y \in X.\)

iii. \(x * 0 = x, \forall x \in X.\)

Theorem (1.1). (Y. B. Jun, E. H. Roh and H. S. Kim [8]) Every BH-algebra satisfying the condition:

\((x * y) * (x * z) * (z * y) = 0, \forall x, y, z \in X\) is a BCI-algebra. We denote this condition by \((b_3).\)
Definition (1.3) : (H. H. Abbass and H. M. A. Saeed [1]) Let \(X \) be a BH-algebra. Then the set \(X_0 = \{ x \in X \mid 0^* x = 0 \} \) is called the BCA-part of \(X \).

Definition (1.4), (J. Meng and XL. X [6]) A BCI-algebra is said to be an implicative if it satisfies the condition:

\((x^*(y^*)^*)^*(y^*) = y^*(y^*) \), \(\forall x, y \in X \). We generalize the concept of an implicative to a BH-algebra.

Definition (1.5). A BH-algebra is said to be an implicative if it satisfies the condition,

\((x^*(y^*)^*)^*(y^*) = y^*(y^*) \); \(\forall x, y \in X \).

Example (1.1). Consider the BH-algebra \(X = \{ 0, 1, 2 \} \) with the binary operation \(* \) defined by the following table:

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Then \((X^*, 0) \) is an implicative BH-algebra.

Remark (1.1). (Y. B. Jun, H. S. Kim and M. Kondo [9]) Let \(X \) and \(Y \) be BH-algebras. A mapping \(f : X \rightarrow Y \) is called a homomorphism if \(f(x^y) = f(x)^* f(y) \), \(\forall x, y \in X \). A homomorphism \(f \) is called a monomorphism (resp., epimorphism) if it is injective (resp., surjective). A bijective homomorphism is called an isomorphism. Two BH-algebras \(X \) and \(Y \) are said to be isomorphic, written \(X \cong Y \), if there exists an isomorphism \(f : X \rightarrow Y \). For any homomorphism \(f : X \rightarrow Y \), the set \(\{ x \in X \mid f(x) = 0 \} \) is called the kernel of \(f \), denoted by \(\ker(f) \), and the set \(\{ f(x) : x \in X \} \) is called the image of \(f \), denoted by \(\text{Im}(f) \). Notice that \(f(0) = 0 \), \(\forall \) homomorphism \(f \).

Definition (1.6). (H. H. Abbass and H. M. A. Saeed [1]) A nonempty subset \(I \) of a BH-algebra \(X \) is called an implicative ideal of \(X \) if:

\(i. \) \(0 \in I \).

\(ii. \) \((x^*(y^*)^*)^* z \in I \) and \(z \in I \) imply \(x \in I \), \(\forall x, y, z \in X \).

Proposition (1.1). (H. H. Abbass and H. M. A. Saeed [1]) Every implicative ideal of a BH-algebra \(X \) is an ideal of \(X \).

Definition (1.7) : (L. A. Zadeh [8]) Let \(X \) be a non-empty set and \(I \) be the closed interval \([0, 1] \) of the real line (real numbers). A fuzzy set \(A \) in \(X \) (a fuzzy subset of \(X \)) is a function from \(X \) into \([0, 1] \).

Definition (1.8): (L. A. Zadeh [8]) Let \(A \) and \(B \) be two fuzzy sets in \(X \), then:

1. \(A = B \) if and only if \(A(x) = B(x) \), \(\forall x \in X \).
2. \(A \subseteq B \) if and only if \(A(x) \leq B(x) \), \(\forall x \in X \).
3. \(A \subseteq B \) if and only if \(A(x) < B(x) \), \(\forall x \in X \). where \(A \) is called a proper fuzzy subset of \(B \).
4. Through part (2), we can deduce that \(x \in A \) if and only if \(A(x) \geq t \).

Definition (1.9): (H. H. Abbass and H. M. A. Saeed [1]) Let \(A \) and \(B \) be two fuzzy sets in \(X \), then

\(i. \) \((A \cup B)(x) = \min \{ A(x), B(x) \}, \forall x \in X \)

\(ii. \) \((A \cap B)(x) = \max \{ A(x), B(x) \}, \forall x \in X \)

\(A \cup B \) and \(A \cap B \) are fuzzy sets in \(X \)

In general, if \(\{ A_\alpha, \alpha \in I \} \) is a family of fuzzy sets in \(X \), then

\(\bigcap_{i=1}^n A_i(x) = \inf \{ A_i(x), i \in I \}, \forall x \in X \) and \(\bigcup_{i=1}^n A_i(x) = \sup \{ A_i(x), i \in I \}, \forall x \in X \). which are also fuzzy sets in \(X \).

Definition (1.10): (M. Ganesh [10]) Let \(A \) be a fuzzy set in \(X \), \(\forall \alpha \in [0, 1] \), the set \(A_\alpha = \{ x \in X, A(x) \geq \alpha \} \) is called a level subset of \(A \). Note that, \(A_0 \) is a subset of \(X \) in the ordinary sense.
Definition (1.11): (E. Mkim and S.S. Ahn [2]) Let X and Y be any two sets, A be any fuzzy set in X and f: X → Y be any function. The set \(f^{-1}(y) = \{ x \in X | f(x) = y \} \), ∀ y ∈ Y. The fuzzy set \(B \) in \(Y \) defined by

\[B(y) = \begin{cases} \sup_{x \in f^{-1}(y)} A(x) & \text{if } f^{-1}(y) \neq \emptyset \\ \emptyset & \text{otherwise} \end{cases} \]

, \∀ y ∈ Y, is called the image of \(A \) under \(f \) and is denoted by \(f(A) \).

Definition (1.12): (E. Mkim and S.S. Ahn [2]) Let X and Y be any two sets, f: X → Y be any function and B be any fuzzy set in \(f(A) \). The fuzzy set \(A \) in \(X \) defined by

\[A(x) = B(f(x)) \], \forall x ∈ X \]

is called the preimage of \(B \) under \(f \) and is denoted by \(f^{-1}(B) \).

Definition (1.13): (Q. Zhang, E. H. Roh and Y. B. Jun [11]) A fuzzy subset \(A \) of a BH-algebra \(X \) is said to be a fuzzy ideal if and only if:

i. \(A(0) \supseteq A(x) \), \forall x ∈ X.

ii. \(A(x) \supseteq \min(A(x^*y), A(y)) \), \forall x, y ∈ X.

Proposition (1.2): (H. H. Abbass and H. A. Dahham [3]) Let \(\{A_{\alpha} | \alpha \in \lambda \} \) be a family of fuzzy ideals of a BH-algebra \(X \.

Then \(\bigcap_{\alpha \in \lambda} A_{\alpha} \) is a fuzzy ideal of \(X \).

Proposition (1.3): (H. H. Abbass and H. A. Dahham [3]) Let \(\{A_{\alpha} | \alpha \in \lambda \} \) be a chain of fuzzy ideals of a BH-algebra \(X \.

Then \(\bigcup_{\alpha \in \lambda} A_{\alpha} \) is a fuzzy ideal of \(X \).

Proposition (1.4): (E. Mkim and S.S. Ahn [2]) Let f: (\(X^*, 0 \)) → (\(Y^*, 0' \)) be BH-homomorphism. If \(B \) be a fuzzy ideal of \(Y \), then \(f^{-1}(B) \) is a fuzzy ideal of \(X \).

Proposition (1.5): (E. Mkim and S.S. Ahn [2]) Let f: (\(X^*, 0 \)) → (\(Y^*, 0' \)) be BH-epimorphism. If \(A \) is a fuzzy ideal of \(X \), then \(f(A) \) is a fuzzy ideal of \(Y \).

Definition (1.14): (H. H. Abbass and H. M. A. Saeed [4]) A fuzzy ideal \(A \) of a BH-algebra \(X \) is said to be fuzzy closed if \(A(0^*x) \supseteq A(x) \), \forall x ∈ X.

Definition (1.15): (H. H. Abbass and H. M. A. Saeed [4]) A fuzzy subset \(A \) of a BH-algebra \(X \) is called a fuzzy implicative ideal of \(X \) if it satisfies:

i. \(A(0) \supseteq A(x) \), \forall x ∈ X.

ii. \(A(x) \supseteq \min \{ A(x^*(y^*x)^*z), A(z) \} \), \forall x, y, z ∈ X.

Definition (1.16): (H. H. Abbass and S. A. Neamah [5]) A nonempty subset \(I \) of a BH-algebra \(X \) is called an implicative ideal with respect to an element \(b \) of a BH-algebra (or briefly b-implicative ideal), \(b \in X \). if

i. \(0 \in I \).

ii. \(((x^*(y^*x))^*z)^*b \in I \) and \(z \in I \) imply \(x \in I \), \forall x, y, z ∈ X.

Proposition (1.6): (H. H. Abbass and H. M. A. Saeed [4]) In BH-algebra of \(X \), every fuzzy implicative ideal is a fuzzy ideal, but the converse is not true in general.

Theorem (1.2): (L. A. Zadeh [8]) A BCI-algebra \(X \) is an implicative if and only if every fuzzy closed ideal of \(X \) is a fuzzy implicative ideal of \(X \).

Theorem (1.3)(H. H. Abbass and S. A. Neamah [5]) Let \(X \) be a BH-algebra and satisfies the condition:

\(((x^*)y)^*(x^*z)^*z^*y = 0, \forall x, y, z \in X \ (b_0) \).

Then \(X \) is an implicative if and only if every fuzzy closed ideal of \(X \) is a fuzzy implicative ideal of \(X \).

2. A Fuzzy Implicative Ideal with Respect to an Element of a BH-algebra.

In this section, a new notion of fuzzy implicative ideal of a BH-algebra , namely a fuzzy implicative ideal with respect to an element of a BH-algebra, is introduced and some related properties are investigated and we state and prove some propositions and theorems.

Definition (2.1): Let \(X \) be a BH-algebra and \(b \) be an element of \(x \). A fuzzy subset \(A \) of \(X \) is called a fuzzy implicative ideal with respect to an element \(b \) (or briefly, fuzzy b-implicative ideal) of \(X \) if it satisfies:

i. \(A(0) \supseteq A(x), \forall x \in X \).

ii. \(A(x) \supseteq \min \{ A((x^*(y^*x))^*z)^*b), A(z) \} , \forall x, y, z \in X \).

Example (2.1): Consider the BH-algebra \(X = \{0, 1, 2, 3 \} \) with the following operation table:
The fuzzy subset A of X defined by

$$A(x) = \begin{cases} 1 & ; x = 0, 3 \\ 0.5 & ; x = 1, 2 \end{cases}$$

Then A is a fuzzy 3-implicative ideal of X.

Remark (2.1). A fuzzy b-implicative ideal of a BH-algebra X may not be a fuzzy implicative ideal of X, as in the following example.

Example (2.2). The fuzzy 3-implicative ideal A of X in example (2.1) is not a fuzzy implicative ideal of X. Since if $x = 1, y = 2, z = 0$, then $A(x) = 0.5 < \min \{A((1*(2*1))*0), A(0)\} = \min \{A(1*2), A(0)\} = \min \{A(0), A(0)\} = A(0) = 1$

Theorem (2.1). Let X be a BH-algebra. Then A is a fuzzy implicative ideal of X if and only if A is a fuzzy 0-implicative ideal of X.

Proof: Let A be a fuzzy implicative ideal of X. Then

i. $A(0) \geq A(x), \forall x \in X$. [By definition (1.15)(i)]

ii. Let $x, y, z \in X$. Then we have $A(x) \geq \min \{A((x*y)*y)*z), A(z)\}$ [By definition (1.15)(ii)]

$\Rightarrow \min \{A((x*(y*x)))*z), A(z)\} = \min \{A((x*(y*x)))*z), A(z)\}$ [Since X is a BH-algebra; $x*0=x, \forall x \in X$]

$\Rightarrow A(x) \geq \min \{A((x*(y*x)))*z), A(z)\}$. Therefore, A is a fuzzy 0-implicative ideal of X.

Conversely, Let A be a fuzzy 0-implicative ideal of X. Then

i. $A(0) \geq A(x), \forall x \in X$. [By definition (2.1)(i)]

ii. Let $x, y, z \in X$. Then $A(x) \geq \min \{A((x*(y*x)))*z), A(z)\}$ [Since A is a fuzzy 0-implicative ideal of X. By definition (2.1)(ii)]

$\Rightarrow \min \{A((x*(y*x)))*z), A(z)\} = \min \{A((x*(y*x)))*z), A(z)\}$ [Since X is a BH-algebra; $x*0=x, \forall x \in X$]

$\Rightarrow A(x) \geq \min \{A((x*(y*x)))*z), A(z)\}$. Therefore, A is a fuzzy implicative ideal of X.

Proposition (2.1). Let X be a BH-algebra, $b \in X$ and A be a fuzzy b-implicative ideal of X, such that $A(b) = A(0)$. Then A is a fuzzy ideal of X.

Proof: Let A be a fuzzy b-implicative ideal of X. To prove A is a fuzzy ideal of X.

i. $A(0) \geq A(x), \forall x \in X$. [By definition (2.1)(i)]

ii. Let $x \in X$. Then $A(x*b)=A((x*0)*b)$ [Since X is BH-algebra; $x*0=x$]

$=A((x*(x*x))*b)$. [Since X is BH-algebra; $x*x=0, \forall x \in X$]

$=A((x*(x*x))*b)$. [Since X is BH-algebra; $x*0=x, \forall x \in X$]

Now, we have $\min \{A((x*(x*x))*0)*b), A(0)\}=A(x*b)$

$\Rightarrow A(x) \geq \min \{A((x*(x*x))*0)*b), A(0)\}$ [By definition (2.1)(ii)]

$\Rightarrow A(x) \geq \min \{A(x*b), A(0)\}$. [Since $A(b) = A(0)$]. Therefore, A is a fuzzy ideal of X.

Remark (2.2). The following example shows that converse of proposition (2.1) is not correct, $\forall b \in X$.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example (2.3). Consider the BH-algebra $X = \{0, 1, 2\}$ with the binary operation \ast defined by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Then the fuzzy set A which defined by

\[
A(x) = \begin{cases}
1, & x = 0 \\
0.5, & x = 1 \\
0, & x = 2
\end{cases}
\]

is a fuzzy ideal of X.

But A is not a fuzzy 0-implicative ideal of X. Since if $x = 2$, $y = 0$, $z = 0$, then $A(2) = 0.5 < \min\{A((2 \ast (0 \ast 2)) \ast 0), A(0)\} = \min\{A(0), A(0)\} = 1$.

And A is not a fuzzy 1-implicative ideal of X. Since if $x = 1$, $y = 0$, $z = 0$, then $A(2) = 0.5 < \min\{A((1 \ast (0 \ast 1)) \ast 0) \ast 1), A(0)\} = \min\{A(0), A(0)\} = A(0) = 1$.

And A is not a fuzzy 2-implicative ideal of X. Since if $x = 2$, $y = 2$, $z = 0$, then $A(2) = 0.5 < \min\{A((2 \ast (2 \ast 2)) \ast 0) \ast 2), A(0)\} = \min\{A(0), A(0)\} = A(0) = 1$.

Therefore, A is not a fuzzy b-implicative ideal.

Proposition (2.2). Let X be a BH-algebra. A be a fuzzy implicative ideal of X, $b \in X$ such that $A(b) = A(0)$. Then A is a fuzzy b-implicative ideal of X.

Proof: Let A be a fuzzy implicative ideal of X. Then

i. $A(0) \geq A(x), \ \forall \ x \in X$ [By definition (1.13)(i)]

ii. Let $x, y, z \in X$. Then $A(x \ast (y \ast x)) \geq \min\{A((x \ast (y \ast x)) \ast z), A(z)\}$ [Since A is a fuzzy ideal of X. By definition (1.13)(ii)]

\[
= \min\{A((x \ast (y \ast x)) \ast z) \ast b), A(z)\} \quad [Since A is a fuzzy ideal of X.]
\]

$\Rightarrow A$ is a fuzzy b-implicative ideal of X. Therefore, A is fuzzy b-implicative ideal of X.

Remark (2.3). The following example shows that the converse of proposition (2.2) is not correct in general.

Example (2.4). Consider the fuzzy 3-implicative ideal A of the BH-algebra X in example (2.1), A is not a fuzzy implicative ideal of X. Since if $x = 1$, $y = 2$, $z = 0$, then $A(1) = 0.5 < \min\{A((1 \ast (2 \ast 1)) \ast 0), A(0)\} = \min\{A(1), A(0)\} = A(0) = 1$.

Theorem (2.2). Let X be a BH-algebra. Then a fuzzy ideal A of X satisfying the condition:

\[
\forall \ x, y \in X; \ A(x) \geq A(x \ast (y \ast x)) \quad (b_1)
\]

is a fuzzy b-implicative ideal of X, where $b \in X$ and $A(b) = A(0)$.

Proof: Let A be a fuzzy ideal of X. Then, we have

i. $A(0) \geq A(x), \ \forall \ x \in X$. [By definition (1.13)(i)]

ii. Let $x, y, z \in X$. Then, we have $A(x \ast (y \ast x)) \geq \min\{A((x \ast (y \ast x)) \ast z), A(z)\}$ [Since A is a fuzzy ideal of X. By definition (1.13)(ii)]

\[
\geq \min\{\min\{A(((x \ast (y \ast x)) \ast z) \ast b), A(b)\}, A(z)\} \quad [Since A is a fuzzy ideal of X.]
\]

\[
= \min\{A(((x \ast (y \ast x)) \ast z) \ast b), A(z)\} \quad [Since A is a fuzzy ideal of X.]
\]

$\Rightarrow A$ is a fuzzy b-implicative ideal of X. $A(b) = A(0)$.

Theorem (2.3). If X is a BH-algebra of X satisfies the condition: $\forall \ x, y \in X; \ x = x \ast (y \ast x) \quad (b_2)$, then every fuzzy ideal of X is a fuzzy b-implicative ideal of X, where $b \in X$ and $A(b) = A(0)$.

Proof: Let A be a fuzzy ideal of X. Then, we have

i. $A(0) \geq A(x), \ \forall \ x \in X$. [By definition (1.13)(i)]

ii. Let $x, y, z \in X$. Then $A(x \ast (y \ast x)) \geq \min\{A((x \ast (y \ast x)) \ast z), A(z)\}$ [Since A is a fuzzy ideal of X. By definition (1.13)(ii)]
Now, $A(x) = A(x*(y*x))$ [By (b_2)]

$\Rightarrow A(x) \geq \min \{A((x*(y*x))z), A(z)\}$ [By definition (1.13)(ii)]

$\Rightarrow A$ is a fuzzy implicative ideal of X. [By definition (1.15)]

Therefore, A is a fuzzy b-implicative ideal of X. [By proposition (2.2)]. ■

Theorem (2.4). Let $X = X_+$ be an implicative BH-algebra satisfies $((x*y) * (x*z))*z*y = 0$, $\forall x, y, z \in X$. (b3),

Then A is a fuzzy ideal of X if and only if it is a fuzzy 0-implicative ideal of X.

Proof: Let A be a fuzzy ideal of X and $x \in X$. Then $A(0*x) = A(0)$.

[Since $X = X_+$. By definition (1.3)]

$\Rightarrow A(0*x) \geq A(x)$. [A(0) \geq A(x), \forall x \in X. By definition (1.13)(i)]

$\Rightarrow A$ is a fuzzy closed ideal of X. [By definition (1.14)]

Since X is BH-algebra satisfies (b3), then X is BCI-algebra. [By theorem (1.1)]

$\Rightarrow A$ is a fuzzy implicative ideal of X. [By theorem (1.2)]

$\Rightarrow A$ is a fuzzy 0-implicative ideal of X. [By theorem (2.2)]. ■

Conversely, Let A be a fuzzy 0-implicative ideal of X.

$\Rightarrow A$ is a fuzzy implicative ideal of X. [By proposition (2.1)]

$\Rightarrow A$ is a fuzzy ideal of X. [By definition (1.6)]. ■

Theorem (2.5). Let $X = X_+$ be an implicative BH-algebra satisfies (b3). Then a fuzzy ideal A of X is a fuzzy b-implicative ideal of X, where $b \in X$ and $A(b) = A(0)$.

Proof: Let A be a fuzzy b-implicative ideal of X. To prove X_A is a b-implicative ideal of X.

i. $A(x) = A(0)$. If $x = 0$, then $0 \in X_A$

ii. Let $x, y, z, b \in X$ such that $((x*(y*x))z)b \in X_A$ and $z \in X_A$

$\Rightarrow A(((x*(y*x))z)b) = A(0)$ and $A(z) = A(0)$

[by definition of b-implicative ideal of X, we have]

$A(x) \geq \min \{A(((x*(y*x))z)b), A(z)\} = \min \{A(0), A(0)\} = A(0)$

$\Rightarrow A(x) \geq A(0)$. But $A(0) \geq A(x)$. [Since A is a fuzzy b-implicative ideal of X]

$\Rightarrow A(x) = A(0)$

$\Rightarrow x \in X_A$. Therefore, X_A is a b-implicative ideal of X.

Proposition (2.3). Let $\{A_\alpha | \alpha \in \Lambda\}$ be a family of fuzzy b-implicative ideals of a BH-algebra X and $b \in X$. Then $\bigcap_{\alpha \in \Lambda} A_\alpha$ is a fuzzy b-implicative ideal of X.

Proof: Let $\{A_\alpha | \alpha \in \Lambda\}$ be a family of fuzzy b-implicative of X and $b \in X$.

i. Let \(x \in X \). Then \(\bigcap \{A_\alpha(0) \geq \inf \{A_\alpha(x) | \alpha \epsilon \lambda \} \} = \inf \{A_{\alpha}(0) | \alpha \epsilon \lambda \} = \bigcup A_\alpha(x) \) \[\text{[Since } A_\alpha \text{ is a fuzzy b-implicative ideal of } X, \forall \alpha \epsilon \lambda. \text{ By definition (2.1)(i)]. Therefore, } \bigcap A_\alpha(0) \geq \bigcup A_\alpha(x). \]

ii. Let \(x, y, z \in X \) and \(b \in X \). Then, we have \(\bigcap A_\alpha(x) = \inf \{A_\alpha(x) | \alpha \epsilon \lambda \} \geq \inf \{\min\{A_\alpha((((x^*(y^*)x)^*)z)^*)b), A_\alpha(z) | \alpha \epsilon \lambda\}\} \) \[\text{[Since } A_\alpha \text{ is a fuzzy b-implicative ideal of } X, \forall \alpha \epsilon \lambda. \text{ By definition (2.1)(ii)]} \]

\[
\begin{align*}
\Rightarrow \bigcap A_\alpha(x) &\geq \min\{\bigcap A_\alpha((((x^*(y^*)x)^*)z)^*)b) | \alpha \epsilon \lambda\}, \bigcup A_\alpha(z) | \alpha \epsilon \lambda\} \\
\text{Therefore, } \bigcap A_\alpha(x) \text{ is a fuzzy b-implicative ideal of } X. &\blacksquare
\end{align*}
\]

Proposition (2.4). Let \(\{A_\alpha | \alpha \epsilon \lambda\} \) be a chain of fuzzy b-implicative ideals of a BH-algebra \(X \) and \(b \in X \). Then \(\bigcup A_\alpha \) is a fuzzy b-implicative ideal of \(X \).

Proof: Let \(\{A_\alpha | \alpha \epsilon \lambda\} \) be a chain of fuzzy b-implicative ideals of \(X \) and \(b \in X \).

i. Let \(x \in X \). Then \(\bigcup A_\alpha(0) = \sup\{A_\alpha(0) | \alpha \epsilon \lambda\} \geq \sup\{A_\alpha(x) | \alpha \epsilon \lambda\} = \bigcup A_\alpha(x) \) \[\text{[Since } A_\alpha \text{ is a fuzzy b-implicative ideal of } X, \forall \alpha \epsilon \lambda. \text{ By definition (2.1)(i)]. Therefore, } \bigcup A_\alpha(0) \geq \bigcup A_\alpha(x). \]

ii. Let \(x, y, z \in X \) and \(b \in X \). Then, we have \(\bigcup A_\alpha(x) = \sup\{A_\alpha(x) | \alpha \epsilon \lambda\} \geq \sup\{\min\{A_\alpha(((x^*(y^*)x)^*)z)^*)b), A_\alpha(z) | \alpha \epsilon \lambda\}\} \) \[\text{[Since } A_\alpha \text{ is a fuzzy b-implicative ideal of } X, \forall \alpha \epsilon \lambda. \text{ By definition (2.1)(ii)]} \]

\[
\begin{align*}
\Rightarrow \bigcup A_\alpha(x) &\geq \min\{\bigcup A_\alpha(((x^*(y^*)x)^*)z)^*)b) | \alpha \epsilon \lambda\}, \bigcup A_\alpha(z) | \alpha \epsilon \lambda\} \\
\text{Therefore, } \bigcup A_\alpha(x) \text{ is a fuzzy b-implicative ideal of } X. &\blacksquare
\end{align*}
\]

Proposition (2.4). Let \(f: (X^*, 0) \rightarrow (Y^*, 0') \) be a BH-epimorphism. If \(A \) is a fuzzy b-implicative ideal of \(X \), then \(f(A) \) is a fuzzy \(f(b) \)-implicative ideal of \(Y \).

Proof: Let \(A \) be a fuzzy b-implicative ideal of \(X \).

i. Let \(y \in Y \). Then, there exists \(x \in X \), \(f(A)(0') = \sup\{A(x_1) | x_1 \epsilon f^{-1}(0')\} \)

\(A(0') = \sup\{A(x) : x \epsilon X \} \geq \sup\{A(x) : x = f^{-1}(y)\} = f(A)(y) \) \[\text{[Since } A \text{ is a fuzzy b-implicative ideal of } X. \text{ By definition (2.1)(i)]} \]

\(\Rightarrow f(A)(0') \geq f(A)(y) \forall y \epsilon Y. \)

ii. Let \(y_1, y_2, y_3, t \epsilon Y \). Then there exist \(f(x_1) = y_1, f(x_2) = y_2, f(z) = y_3 \) and \(f(b) = t \) such that \(x_1, x_2, z, b \epsilon X \)

\(\Rightarrow f(A)(y_1) = \sup\{A(x_1) | x \epsilon f^{-1}(y_1)\} \)
\[\sup \{ A \mid \{(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}) \} \in f^{-1}(\{(y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}) \}) \} \]

[Since \(A \) is a fuzzy b-implicative ideal of \(X \). By definition (2.1)(ii)]

\[\min \{ \sup \{ A \mid \{(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}) \} \in f^{-1}(\{(y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}) \}) \} \}
\]

\[\min \{ \min \{ A \mid \{(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}) \} \in f^{-1}(\{(y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}) \}) \} \}
\]

[Since \(f \) is an epimorphism. By remark (1.1)]

\[\Rightarrow f(A)(y) \geq \min \{ (f(A)(y_1), y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}) \}, (f(A)(y)) \}
\]

Therefore, \(f(A) \) is a fuzzy b-implicative ideal or bi-implicative ideal of \(Y \).

Proposition (2.5) Let \(f : (X, ^* , 0) \rightarrow (Y, ^* , 0) \) be a BH-homomorphism. If \(B \) is a fuzzy b-implicative ideal of \(Y \), then \(f^{-1}(B) \) is a fuzzy b-implicative ideal of \(X \).

Proof: Let \(B \) be a fuzzy b-implicative ideal of \(Y \). To prove \(f^{-1}(B) \) is a fuzzy b-implicative ideal of \(X \).

i. Let \(x \in X \). Then \((f^{-1}(B))(x) = B(f(x)) = B(0) \geq B(f(x)) = (f^{-1}(B))(x) \) \[Since \(B \) is a fuzzy b-implicative ideal of \(Y \). By definition (2.1)(i)]

\[\Rightarrow (f^{-1}(B))(x) \geq (f^{-1}(B))(x), \forall x \in X. \]

ii. Let \(x, y, z \in X \). Then

\[(f^{-1}(B))(x) = B(f(x)) \] [By definition (1.12)]

\[\geq \min \{ B[(1, (x', y', z')] \} \] [Since \(B \) is a fuzzy b-implicative ideal of \(Y \). By definition (2.1)(i)]

\[\min \{ B(1, (x', y', z')) \} \] [Since \(f \) is a homomorphism.]

\[\min \{ (f^{-1}(B))(1, (x', y', z')) \} \]

[Since \(f^{-1}(B)(1, (x', y', z')) \)] [By definition (1.12)]

\[\Rightarrow (f^{-1}(B))(x) \geq \min \{ (f^{-1}(B))(1, (x', y', z')) \}, (f^{-1}(B))(z) \} \]

Therefore, \(f^{-1}(B) \) is a fuzzy b-implicative ideal of \(X \).

Proposition (2.6): Let \(X \) be a BH-algebra and \(A \) be a fuzzy subset of \(X \). Then \(A \) is a fuzzy b-implicative ideal of \(X \) if and only if \(f(A)(x) = A(x) + 1 - A(0) \) is a fuzzy b-implicative ideal of \(X \) where \(b \in X \).

Proof: Let \(A \) be a fuzzy b-implicative ideal of \(X \). Then

i. \(A^0(0) = A(0) + 1 - A(0) \)

\[\Rightarrow A^0(0) = 1. \text{ Then } A^0(0) \geq A^0(x), \forall x \in X. \]

ii. Let \(x, y, z \in X \) and \(b \in X \). Then \(A^0(x) = A(x) + 1 - A(0) \geq \min \{ A(((x', y', z')) + b), A(z) + 1 - A(0) \} \) [Since \(A \) is a fuzzy b-implicative ideal of \(X \). By definition (2.1)(i)]

\[\Rightarrow \min \{ A(((x', y', z')) + b), A(z) + 1 - A(0) \} \geq \min \{ A^0(((x', y', z')) + b), A^0(z) \} \]

\[\Rightarrow A^0(x) \geq \min \{ A^0(((x', y', z')) + b), A^0(z) \} \]

\[\Rightarrow A^0 \text{ is a fuzzy b-implicative ideal of } X. \]

Conversely, Let \(A^0 \) be a fuzzy b-implicative ideal of \(X \).

i. Let \(x \in X \). Then we have \(A(0) = A^0(0) + 1 - A(0) \geq A^0(0) + 1 - A(0) = A(0) \) [Since \(A^0 \) is a fuzzy b-implicative ideal of \(X \). By definition (2.1)(i)]

\[\Rightarrow A(0) \geq A(x), \forall x \in X. \]

ii. Let \(x, y, z \in X \) and \(b \in X \). Then \(A^0(x) = A^0(x) + 1 - A(0) \geq \min \{ A^0(((x', y', z')) + b), A^0(z) + 1 - A(0) \} \) [Since \(A^0 \) is a fuzzy b-implicative ideal of \(X \). By definition (2.1)(ii)]

\[\Rightarrow \min \{ A^0(((x', y', z')) + b) + 1 - A(0), A^0(z) + 1 - A(0) \} \geq \min \{ A^0(((x', y', z')) + b), A^0(z) \} \]

\[\Rightarrow A(x) \geq \min \{ A((x', y', z') + b), A(z) \}. \text{ Then } A \text{ is a fuzzy b-implicative ideal of } X. \]

Proposition (2.7). Let \(X \) be a BH-algebra and let \(w, b \in X \). If \(A \) is a fuzzy b-implicative ideal of \(X \), then \(\uparrow A(w) \) is a fuzzy b-implicative ideal of \(X \).
Proof: Let A be a fuzzy b-implicative ideal of X. Then
i. A(0) ≥ A(x), ∀ x ∈ X.
 [Since A is a fuzzy b-implicative ideal of X. By definition (2.1)(i)]
 ⇒ A(0) ≥ A(w). Then 0 ∈ A(w)
ii. Let x, y, z ∈ X such that ((x*(y*x)))*z)*b ∈ A(w) and z ∈ A(w)
 ⇒ A(w) ≤ A(((x*(y*x)))*z)*b) and A(w) ≤ A(z)
 ⇒ A(w) ≤ min{A(((x*(y*x)))*z)*b) , A(z)}
But A(x) ≥ min{A(((x*(y*x)))*z)*b) , A(z)} [Since A is a fuzzy b-implicative ideal of X. By definition (2.1)(ii)]
 ⇒ A(w) ≤ A(x)
 ⇒ x ∈ A(w). Therefore, A(w) is a b-implicative ideal of X. ■

Theorem (2.7). Let X be a BH-algebra, A be a fuzzy ideal of X A(b) = A(0). Then A is a fuzzy b-implicative ideal of X if and only if A(α) is a b-implicative ideal of X, ∀ α ∈ [0, A(0)].
Proof: Let A be a fuzzy b-implicative ideal of X. To prove A(α) is a b-implicative ideal of X.
 i. Let x ∈ A(α). Then A(x) ≥ α [By definition (2.3.1)(ii) of A(α)]
 ∴ A(0) ≥ α. Then 0 ∈ A(α).
ii. Let x, y, z, b ∈ X such that ((x*(y*x)))*z)*b ∈ A(α) and z ∈ A(α).
 ⇒ A(((x*(y*x)))*z)*b) ≥ α and A(z) ≥ α [By definition (2.3.1)(ii) of A(α)]
 min{ A(((x*(y*x)))*z)*b) , A(z) } ≥ α
But A(x) ≥ min{ A(((x*(y*x)))*z)*b) , A(z) } [Since A is a fuzzy b-implicative ideal of X. By definition (2.1)(ii)]
 ⇒ A(x) ≥ α = x ∈ A(α) [By definition (2.3.1)(ii) of A(α)]
Therefore, A(α) is a b-implicative ideal of X, ∀ b ∈ A(α).
Conversely, To prove A is a fuzzy b-implicative ideal of X.
 i. 0 ∈ A(α) [By definition (2.3.1)(i)]. Then A(0) ≥ α = A(x), ∀ x ∈ X.
 ii. Let x, y, z ∈ X such that α = min{ A(((x*(y*x)))*z)*b) , A(z)}
 ⇒ A(((x*(y*x)))*z)*b) ≥ α and A(z) ≥ α
 ⇒ ((x*(y*x)))*z)*b ∈ A(α) and z ∈ A(α).
 ⇒ x ∈ A(α) [Since A(α) is a b-implicative ideal of X. By definition (1.16)(ii)]
 ⇒ A(x) ≥ α
 ⇒ A(x) ≥ min{ A(((x*(y*x)))*z)*b) , A(z) }. Therefore, A is a fuzzy b-implicative ideal of X, A(b) = A(0). ■

References

